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UNIT 3 

Fourier Series  
 

3.1:  ORTHOGONAL FUNCTIONS 

Definition: Functions ),...(),( 21 xyxy  defined on some interval are called orthogonal on a x  b 

with respect to the weight function p(x) > 0 if  
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is called the square of the norm of )(xyn and written as 

2

ny . If the norm is 

unity, we say that the set of functions is an orthonormal set.  If the weight function is unity, we 

simply say that the set is orthogonal on a x  b. 

Examples of sequences of orthogonal functions are: The set of functions 1, cos (nx) , n = 1, 2, 3, … or 

1, sin(nx) , n =  1, 2, 3, … or 1, cos(nx), sin(nx), n = 1, 2, 3, , on the interval 2 axa  with  

weight functions p(x) = 1 for any real constant a. 

The chief advantage of the knowledge of these orthogonal sets of functions is that they yield series 

expansions of a given function in a simple fashion.  Let 1 2, ,y y  be an orthogonal set with respect 

to the weight function p(x) on an interval bxa  .  Let f(x) be a given function that can be 

represented in terms of )(xyn  by a convergent series, 
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This is called an orthogonal expansion or the generalized Fourier series.  The orthogonality of the 

functions helps us to find the unknown coefficients 210 ,, aaa  in a simple fashion.  These are 

called Fourier coefficients of f(x) with respect to ,,, 210 yyy .  If we multiply both side of the above 

expansion by p(x)yn(x) for a fixed n, and then integrate over a  x  b, we obtain, assuming term by  

term integration is permissible,                  
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integrals being zero in the right hand side, because of the orthogonality of the set.  
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Definition:  A function f is said to be a periodic function with period p if p is the least positive number 

such that f(x +p) = f(x) for all x in the domain of f.  It follows that f(x+np) = f(x) for all x in the 

domain of f and all integers n.  
 

Example :  f(x) = sinx and g(x) = cos x are the familiar periodic functions with period p = 2. 

The constant function h(x) = c is a periodic function, since h(x +p) =c = h(x)  for all  p (0, ). 

Proposition:  If f and g are periodic functions with period p, then H(x) = af(x) + bg(x), for some 

constants a & b, is a periodic function with period p. 

Proof:  H(x+p) = a f(x+p) +bg(x +b) = af(x) + bg(x) = H(x) since f(x+p) = f(x) &g(x+p) = g(x)  

Therefore, H(x) is a periodic function with period p. 

Definition :  A functional series of the form 
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 is called a trigonometric series; where nn baa ,,0  (n = 1, 2, 3,  

are real constants,) are called the coefficients of the trigonometric series. 

If the series converges, say to a function f(x), i.e, 
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Then f is a period function with period p = 2 , by the above proposition.   

Thus f(x+2) = f(x) for all x in the domain of f, where  
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3.2 Fourier Series  

       3.2.1 Fourier Series of function with period     

Definition :  The Fourier series for the periodic function f(x) in an interval α < x < α + 2 is given by.
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,,0 nn bandaa  n = 1, 2, 3,  are called the Fourier coefficients.  

To evaluate the Fourier Coefficients, the following integrals, involving sine and cosine functions are 

useful. 
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In addition to these properties of integrals involving sine and cosine functions, we often need the 

following trigonometric functions for particular arguments. 
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Theorem :  (Euler’s Formulae):  The Fourier coefficients in     
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Corollary :  1. If   = 0, the interval becomes 0 < x < 2 , and Euler’s formulae are given by: 
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2. If  = - , then the interval becomes -< x < , and the Euler’s Formulae and given by: 
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Solution:  The Fourier serves for f in (0, 2) is  
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DIRICHLET’S CONDITIONS:  

Suppose that: 

a) f(x) is defined and single – valued except possibly at a finite number of points in(α, α + 2). 

b) f(x) is periodic outside (α, α + 2) with period 2. 

c) f(x) and )(xf  are sectionally continuous in (α, α + 2). 

Then the series  
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i) f(x) if x is a point of continuity 
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if c is a point of discontinuity .  

Moreover, when f(x) has finite number of discontinuities in any one period, for instance if in an 

interval (α, α + 2), f(x) is defined by
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Example:  Find the Fourier series expansion for  
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By Dirichlet’s Condition, we have that                    
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3.2.2  Fourier Series of Functions with arbitrary period P = 2L 

In many engineering problems, the period of the function required to be expanded is not 2 but some 

other interval say 2L. In order to apply the foregoing discussion to functions of period 2L, this interval 

must be converted to the length 2 .  This involves only a proportional change in the scale. 
 

Consider the periodic function f(x) defined on (α, α + 2L).  To change the problem to period 2 put 
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 . This gives when )2,( Laax  .  Thus the function f(x) of period 

2L in (α, α + 2L) is transformed to function 
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series Expansion of f(x) in the interval  (α, α +2L) is given by  
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Corollary :   

i. Putting α = 0 in these formulae, we get the corresponding Fourier Coefficients for the 

interval (0, 2L)     
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   ii. Putting a = - L in the above formulae, we get the results: 
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Example :  Find the Fourier series of the periodic function f(x) of period 2, where  
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 3.2.3 Fourier Series of Odd and Even Functions 

Definition:  A function f(x) is said to be odd iff f (-x) = -f(x)  

                          A function f(x) is said to be even iff(-x) = f(x) 

Example :  The functions sin(nx) and tan (nx) are odd functions.  Graph of odd function is symmetric 

about the origin. 

Example :  The functions cos(nx), x
2
, sec(nx) are even functions. Graphs of even functions are 

symmetric about y-axis. 

Proposition :  If f(x) is a periodic function with period p = 2L, then     
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Recall that a periodic function f(x) defined in (- L, L) can be represented by the Fourier series:
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Therefore, the Fourier series expansion of a periodic even function f(x) contains only the cosine terms 

whose coefficients are  
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ii)  Putting x , we get  
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 HALF – RANGE EXPANSION  

In many problems of physics and engineering there is a practical need to apply a Fourier Series to a 

non – periodic function F(x) on the interval 0 < x < T.  Because of physical or mathematical 

considerations, it may be possible to extend F(x) over the interval –T < x < T, making it periodic of 

period P = 2T.  The following figures illustrate the odd and even extensions of F(x) which have 

Fourier Sine and Fourier Cosine series, respectively. 

 a)  Original function  

 

   b)  Odd Extension                   c)  Even Extension  

 

 

 

 

 

 

Examples :  Express f(x) = x as a half – range  

a) Sine series in 0 < x < 2.b)Cosine series in 0 < x < 2. 

Solutions:  The graph of f(x) = x in 0 < x <2 is the line OA.  Let us extend the function f(x) in the 

interval -2 < x < 0 (shown by the line BO) so that the new function is  symmetric about the origin and , 

therefore, represents an odd function in (-2, 2) 
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Hence the Fourier series for f(x) over the full period (-2, 2) will contain only sine series terms given by 
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b)  The graph of f(x) = x in (0, 2) is the line OA.  Let us extend the function f(x) in the interval (-2, 0) 

(shown by the OB ) so that the new function is symmetric about the 

       y – axis and, therefore, represents an even function in (-2, 2). 
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Hence the Fourier series for f(x) = x over the full period (-2, 2) will contain only cosine terms given by 
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Therefore, the desired result is: 
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3.3 FOURIER INTEGRALS: 
Consider a function f(x) which satisfies the Dirichlets conditions  

in every interval (-L, L) so that, we have 
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.  Substituting the values of 

nn0 b  and a  a  in the 

Fourier series expansion, we 

get the form              
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 called the Fourier Integral of f(x). 

Remark:  1. If function f is continuous at x, then  
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2. Fourier sine and cosine integrals. Expanding cos(t-x) = cos (t - x) 

= cost cosx + sin t sin t, the Fourier integral of f(x) may be written as                  
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If f(x) is an odd function, f(t) cos (t) is also an odd function while f(t) sin (t) is even.  Then the 1
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term on the right side of the above equation vanishes, and 
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known as the Fourier Sine integral. 

Similarly, if f(x) is even, the above integral takes the form  
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Solution:  The Fourier sine integral of f(x) is 
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At x =, which is a point of discontinuity of f(x), then the value of the above integral is   
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